2,023 research outputs found

    Suppression of Shot Noise in Quantum Point Contacts in the "0.7" Regime

    Full text link
    Experimental investigations of current shot noise in quantum point contacts show a reduction of the noise near the 0.7 anomaly. It is demonstrated that such a reduction naturally arises in a model proposed recently to explain the characteristics of the 0.7 anomaly in quantum point contacts in terms of a quasi-bound state, due to the emergence of two conducting channels. We calculate the shot noise as a function of temperature, applied voltage and magnetic field, and demonstrate an excellent agreement with experiments. It is predicted that with decreasing temperature, voltage and magnetic field, the dip in the shot noise is suppressed due to the Kondo effect.Comment: 4 pages, 1 figur

    Evidence for localization and 0.7 anomaly in hole quantum point contacts

    Full text link
    Quantum point contacts implemented in p-type GaAs/AlGaAs heterostructures are investigated by low-temperature electrical conductance spectroscopy measurements. Besides one-dimensional conductance quantization in units of 2e2/h2e^{2}/h a pronounced extra plateau is found at about 0.7(2e2/h)0.7(2e^{2}/h) which possesses the characteristic properties of the so-called "0.7 anomaly" known from experiments with n-type samples. The evolution of the 0.7 plateau in high perpendicular magnetic field reveals the existence of a quasi-localized state and supports the explanation of the 0.7 anomaly based on self-consistent charge localization. These observations are robust when lateral electrical fields are applied which shift the relative position of the electron wavefunction in the quantum point contact, testifying to the intrinsic nature of the underlying physics.Comment: 4.2 pages, 3 figure

    Phase switching in a voltage-biased Aharonov-Bohm interferometer

    Full text link
    Recent experiment [Sigrist et al., Phys. Rev. Lett. {\bf 98}, 036805 (2007)] reported switches between 0 and π\pi in the phase of Aharonov-Bohm oscillations of the two-terminal differential conductance through a two-dot ring with increasing voltage bias. Using a simple model, where one of the dots contains multiple interacting levels, these findings are explained as a result of transport through the interferometer being dominated at different biases by quantum dot levels of different "parity" (i.e. the sign of the overlap integral between the dot state and the states in the leads). The redistribution of electron population between different levels with bias leads to the fact that the number of switching events is not necessarily equal to the number of dot levels, in agreement with experiment. For the same reason switching does not always imply that the parity of levels is strictly alternating. Lastly, it is demonstrated that the correlation between the first switching of the phase and the onset of the inelastic cotunneling, as well as the sharp (rather than gradual) change of phase when switching occurs, give reason to think that the present interpretation of the experiment is preferable to the one based on electrostatic AB effect.Comment: 12 pages, 9 figure

    Spin-Orbit Assisted Variable-Range Hopping in Strong Magnetic Fields

    Full text link
    It is shown that in the presence of strong magnetic fields, spin-orbit scattering causes a sharp increase in the effective density of states in the variable-range hopping regime when temperature decreases. This effect leads to an exponential enhancement of the conductance above its value without spin-orbit scattering. Thus an experimental study of the hopping conductivity in a fixed, large magnetic field, is a sensitive tool to explore the spin-orbit scattering parameters in the strongly localized regime.Comment: 9 pages + 2 figures (enclosed), Revte

    Generalized conductance sum rule in atomic break junctions

    Full text link
    When an atomic-size break junction is mechanically stretched, the total conductance of the contact remains approximately constant over a wide range of elongations, although at the same time the transmissions of the individual channels (valence orbitals of the junction atom) undergo strong variations. We propose a microscopic explanation of this phenomenon, based on Coulomb correlation effects between electrons in valence orbitals of the junction atom. The resulting approximate conductance quantization is closely related to the Friedel sum rule.Comment: 4 pages, 1 figure, appears in Proceedings of the NATO Advanced Research Workshop ``Size dependent magnetic scattering'', Pecs, Hungary, May 28 - June 1, 200

    Non-collinear magnetoconductance of a quantum dot

    Full text link
    We study theoretically the linear conductance of a quantum dot connected to ferromagnetic leads. The dot level is split due to a non-collinear magnetic field or intrinsic magnetization. The system is studied in the non-interacting approximation, where an exact solution is given, and, furthermore, with Coulomb correlations in the weak tunneling limit. For the non-interacting case, we find an anti-resonance for a particular direction of the applied field, non-collinear to the parallel magnetization directions of the leads. The anti-resonance is destroyed by the correlations, giving rise to an interaction induced enhancement of the conductance. The angular dependence of the conductance is thus distinctly different for the interacting and non-interacting cases when the magnetizations of the leads are parallel. However, for anti-parallel lead magnetizations the interactions do not alter the angle dependence significantly.Comment: 7 pages, 7 figure
    • …
    corecore